Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Climate change affects precipitation phase, which can propagate into changes in streamflow timing and magnitude. This study examines how the spatial and temporal distribution of rainfall and snowmelt affects discharge in rain–snow transition zones. These zones experience large year-to-year variations in precipitation phase, cover a significant area of mountain catchments globally, and might extend to higher elevations under future climate change. We used observations from 11 weather stations and snow depths measured from one aerial lidar survey to force a spatially distributed snowpack model (iSnobal/Automated Water Supply Model) in a semiarid, 1.8 km2 headwater catchment. We focused on surface water input (SWI; the summation of rainfall and snowmelt on the soil) for 4 years with contrasting climatological conditions (wet, dry, rainy, and snowy) and compared simulated SWI to measured discharge. A strong spatial agreement between snow depth from the lidar survey and model (r2 = 0.88) was observed, with a median Nash–Sutcliffe efficiency (NSE) of 0.65 for simulated and measured snow depths at snow depth stations for all modeled years (0.75 for normalized snow depths). The spatial pattern of SWI was consistent between the 4 years, with north-facing slopes producing 1.09–1.25 times more SWI than south-facing slopes, and snowdrifts producing up to 6 times more SWI than the catchment average. Annual discharge in the catchment was not significantly correlated with the fraction of precipitation falling as snow; instead, it was correlated with the magnitude of precipitation and spring snow and rain. Stream cessation depended on total and spring precipitation, as well as on the melt-out date of the snowdrifts. These results highlight the importance of the heterogeneity of SWI at the rain–snow transition zone for streamflow generation and cessation, and emphasize the need for spatially distributed modeling or monitoring of both snowpack and rainfall dynamics.more » « less
-
null (Ed.)An important consideration for water resources planning is runoff timing, which can be strongly influenced by the physical process of water storage within and release from seasonal snowpacks. The aim of this presentation is to introduce a novel method that combines light detection and ranging (LiDAR) with ground-penetrating radar (GPR) to nondestructively estimate the spatial distribution of bulk liquid water content in a seasonal snowpack during spring melt. This method was developed at multiple plots in Colorado in 2017 and applied at the small catchment scale in 2019. We developed this method in a manner to observe rapid changes that occur at subdaily timescales. Observed volumetric liquid water contents ranged from near zero to 19%vol within the scale of meters during method development. We also show rapid changes in bulk liquid water content of up to 5%vol that occur over subdaily timescales. The presented methods have an average uncertainty in bulk liquid water content of 1.5%vol, making them applicable for studies to estimate the complex spatio-temporal dynamics of liquid water in snow. During the spring snowmelt season of 2019, we applied this method to a small headwater catchment in the Colorado Front Range. A total of 9 GPR surveys of approximately 3 km in length were conducted over a six-week period. Additionally, five LiDAR scans occurred over the same area. Using this technique, we identify locations that melting snow accumulates and is stored as liquid water within the snowpack. This work shows that the vadose zone may be conceptualized, during snowmelt, as extending above the soil-snow interface to include variably saturated flow processes within the snowpack.more » « less
An official website of the United States government
